If you want a radical career change, expect to do it all on your own but don't burn your bridges immediately. This article is mainly geared towards folks who want to learn more about data science with python on their own.

## Learn Data Science With Python ...

Python is a high-level programming language that is becoming more and more popular for doing Data Science and Machine Learning. Created by Guido van Rossum and first released in 1991, Python has a design philosophy that emphasizes code readability, notably using significant whitespace.

Most coders prefer using Python for Data Science and developing artificial intelligence and machine learning apps

In order to begin, you can download anaconda from field ion since it is highly recommended. After downloading, you can start by comprehending the fundamentals of the Python, data scraping, importing data, data form.

Also, there is a need to learn Scientific libraries in Python such as Numpy, Matplotlib, Pandas, and SciPy,

We have listed some of the best (and free!!!) available resources in the following sections to help you bootstrap your career in the field of Data Science using Python.

*Why Data Science with Python?*

Python is very effective for performing data science with plenty of resources available from books to online courses.

You will find significant set of data science libraries one can use with ready-to-use different packages for loading and playing around with data, visualizing the data, transforming inputs into a numerical matrix, or actual machine learning and assessment.

*If you are committed to learning Data Science with Python track, Here's a Curriculum Guideline 🍠*

### Python for Data Science Courses 📙

Start with a Course or a book and study all the important topics for doing data science with Python. Our brain is similar to a muscle, Keeping your brain “fit” with deliberate practice almost every day will help you find a sweet spot for Python.

#### Python Data Science Track - DataCamp

#### IBM Python for Data Science

*-*IBM#### Introduction to Python for Data Science

*-*Microsoft

### Listen To Python Podcasts 🌯

These podcasts will be of tremendous help while navigating through a forest of abstraction especially when you don't know where you're headed. They are great with consistently interesting guests who give away the best resources and present thoughtful content.

### Networking for Nerds 🤓

If you are in the right group of people, you'll get the right kind of support. Find people who you could learn from and create some positive reinforcement. Here are some resources to help you get connected and understand your in-group.

The whole point of joining the online communities or going to conferences and regularly attending a Meetup is not to be liked but to benefit from the high-impact sessions and find someone who you will like because then they'll like you in return and help to you if you are seen around repeatedly.

#### PyData

#### reddit data science

#### Data Science Meetups

#### The Data Science Conference

#### KDNuggets Meetings

#### Machine Learning Meetups

If you don't find any Meetups around your area, write some Python code to find the right Meetup groups around your location. There is a Meetup API client written in Python with all the documentation that has a complete list of available API methods and their descriptions.

## Get Good at Statistics and Maths for Data Science 📊

It's easy to fall into a state of depression when you don't have the ** know-how-to** of Statistics and Maths when learning Numpy, Pandas or Scikit-learn.

We hope that the following resources will help you to start building the Data Science skills required today.

### Why Statistics for Data Science

A data scientist is someone who is better at statistics than any software engineer and better at software engineering than any statistician.

As a data scientist student, You can master the core concepts, probability, Bayesian thinking, and even statistical machine learning from best available books or an online course.

#### Statistics for Data Science Courses

If you need an introduction to Statistics, start with any of the beginner level course listed below.

Try and integrate some of these online courses into your schedule while learning python. You'll feel very confident while learning to work with analytical libraries for Python.

##### Introduction to Probability and Data - Duke University

##### Inferential Statistics - University of Amsterdam

##### Bayesian Statistics: From Concept to Data Analysis - University of California

##### Statistics Foundations: Understanding Probability and Distributions - Dmitri Nesteruk

##### MicroMasters Program in Statistics and Data Science - Massachusetts Institute of Technology

If you already have a background in statistics and want to learn about the advanced statistical concepts, you’ll find resources provided by EliteDataScience quite helpful.

### Why Learn Maths for Data Science

Mathematics is the bedrock of any contemporary discipline of science. It is no surprise that almost all the techniques of modern data science (including all of the machine learning) have some deep mathematical underpinning or the other.

#### Maths for Data Science Courses

You don’t need a degree in Mathematics to succeed in data science. Yet, if you do have a math background, you’ll definitely get ahead.

Here are some best online classes to master the vocabulary, notation, concepts, and algebra rules that all data scientists must know before moving on to a more advanced material.

##### Introduction to Mathematical Thinking - Stanford University

##### Data Science Math Skills - Duke University

##### Introduction to Algebra - SchoolYourself

##### Algebra I - Khan Academy

Also, If you have little to no background in Maths or need a refresher, we suggest that get a copy of All the Mathematics You Missed: But Need to Know for Graduate School for an overview of mathematics that one should have been exposed to upon reaching Graduate School.

###### Before You Go

We have made sure that a team of 2 Python Programmers and 3 Content Researchers has put all the wisdom and experience in this article.

We hope the resources listed in this article puts you in the fast lane and help you bootstrap your career in the field of Data Science with Python.

You may also be interested in reading about The Best (and Affordable!!!) Data Science Courses with a Specialization Certificate.

If you liked this article enough, do share it with your friends and subscribe to our Data-Centric Newsletters to keep up with similar insights once every fortnight. Having said that – Is there anything you feel we should have included? **Let us know in the comments below**!

Wishing you the best with your career!

*happy learning!* 👇🏾